Pular para o conteúdo principal

Introdução a Função

Introdução a Função

O que é uma função:

Dados dois conjuntos 𝐴 e 𝐵, não vazios, uma relação 𝑓 de 𝐴 em 𝐵 recebe o nome de aplicação de 𝐴 em 𝐵 ou função definida em 𝐴 com imagens em 𝐵 se, e somente se, para todo 𝑥 ∈ 𝐴 existe um só 𝑦 ∈ 𝐵 tal que (𝑥, 𝑦) ∈ 𝑓.

Ocorre uma função quando há dois conjuntos e algum tipo de associação ocorre entre eles, que faça todos elementos do primeiro conjunto corresponder um único elemento do segundo.
    
Em uma função 𝑓, deve haver uma lei de formação que fará a associação entre os conjuntos. Exemplo: 
𝑓(x) = x ∙ 2

Podemos perceber os elementos elencados acima por meio desse diagrama de Veen, da função 𝑓(x) = x ∙ 2, de A em B:

Podemos perceber que a função 𝑓(x) associa cada elemento de A, a pelo menos um elemento de B. A lei de formação determina que sairá flechadas do conjunto A de cada um de seus elementos, acertando a flechada no dobro do elemento de A no elemento de B: (-1) ∙ 2 = -2...

No exemplo acima, o Conjunto A corresponde ao conjunto Domínio, o conjunto B corresponde ao conjunto Contra Domínio,  e os elementos que receberam as flechadas são o Conjunto Imagem.


Por não poder sair mais de uma flechada do Domínio, em um gráfico jamais teremos uma função em que, traçado uma reta paralela ao eixo y, o gráfico seja cortado em dois pontos.

Comentários

Postagens mais visitadas deste blog

Função Logarítmica

  FUNÇÃO LOGARÍTMICA É denominada de função logarítmica a  função  f:  R* +   →   R , dada por f(x) = log a  x , com 0 <   a   ≠ 1. Para que o logaritmo exista, e por consequência a função também, devemos lembrar da condição de existência do logaritmo, que é: a > 0 e a   ≠ 1. E x, (o logaritmando) x > 0. O domínio são os números positivos, o contra domínio são os números reais e o conjunto imagem também é o conjunto dos números reais. GRÁFICO: O tipo de gráfico irá depender da base do logarítmo, ou seja, será diferente em cada um desses intervalos: Se a base estiver entre 0 e 1, o gráfico é de um tipo. E se estiver depois do 1, será de um outro tipo. a > 1 - Crescente 0 < a < 1 - Decrescente O gráfico sempre passa pelo ponto (1, 0); O gráfico sempre está todo a direita do eixo y; Quando a > 1, a função logarítmica é crescente; Quando 0 < a < 1, a função é decrescente; Domínio:  R* +; Imagem: R; A função...

Função definida por mais de uma Sentença

 Função definida por mais de uma Sentença Uma função definida por mais de uma sentença, como o próprio nome já diz, tem mais de uma lei de formação. Devemos sempre observar o intervalo de x para ver a função a ser utilizada. No caso da função acima, será 2x + 1 quando x < 0, e x - 3 quando x for maior ou igual a 0. Exemplo: Gráfico: Construa separado, de acordo com o  intervalo definido na função. Cuide sempre dos extremos. Observe o tipo de cada parte da função, se é constante, do 1º grau, 2º grau... Exemplo: Referências  BONJORNO, José Roberto; GIOVANNI, José Ruy; DE SOUZA, Paulo Roberto Câmara. Prisma Matemática: Funções e Progressões. 1. ed. São Paulo: FTD, 2020.

Introdução à Lógica 3/4

 3. Tautologias, Proposições logicamente falsas, Relação de implicação e Relação de equivalência I. TAUTOLOGIAS Seja uma proposição formada a partir de outras (p, q ,r) mediante o emprego de conectivos (˄ ou ˅) ou de modificador (~) ou de condicionais (→ ou ↔) t: (p ˄ ~p) → (q ˅ p) Dizemos que t é uma tautologia ou proposição logicamente verdadeira quando t tem o valor logico V, independente dos valores lógicos de p,q,r.  Assim, a tabela-verdade de uma tautologia t apresenta apenas v na coluna t. Veja a tabela abaixo:   II. PROPOSIÇÕES LOGICAMENTE FALSAS Seja f uma proposição formada a partir de outras (p, q, r (...)) mediante o emprego de conectivos (˄ ou ˅) ou de modificador (~) ou de condicionais (→ ou ↔). Dizemos que f uma proposição logicamente falsa quando f tem o valar lógico falso, independente dos fatores lógicos de p, q, r, etc. III. RELAÇÃO DE IMPLICAÇÃO Quando não temos simultaneamente p verdadeiro e q falso, então temos uma relação de implicação. Quando p imp...